Universal discriminative quantum neural networks
نویسندگان
چکیده
منابع مشابه
Manifold Regularized Discriminative Neural Networks
Unregularized deep neural networks (DNNs) can be easily overfit with a limited sample size. We argue that this is mostly due to the disriminative nature of DNNs which directly model the conditional probability (or score) of labels given the input. The ignorance of input distribution makes DNNs difficult to generalize to unseen data. Recent advances in regularization techniques, such as pretrain...
متن کاملOne-Shot Learning in Discriminative Neural Networks
Learning a concept from few examples remains a difficult problem in machine learning. Many of the breakthough successes have relied on applying gradient-based optimisation to high-capacity models. This has required large labelled datasets and long offline training times. However, there are many tasks where such data is not available and we need to quickly learn from only a few examples. In the ...
متن کاملSequence-discriminative training of deep neural networks
Sequence-discriminative training of deep neural networks (DNNs) is investigated on a 300 hour American English conversational telephone speech task. Different sequencediscriminative criteria — maximum mutual information (MMI), minimum phone error (MPE), state-level minimum Bayes risk (sMBR), and boosted MMI — are compared. Two different heuristics are investigated to improve the performance of ...
متن کاملSymmetric Discrete Universal Neural Networks
Given the class of symmetric discrete weight neural networks with finite state set (0, l}, we prove that there exist iteration modes under these networks which allow to simulate in linear space arbitrary neural networks (non-necessarily symmetric). As a particular result we prove that an arbitrary symmetric neural network can be simulated by a symmetric one iterated sequentially, with some nega...
متن کاملQuantum-inspired Neural Networks
Quantum computing (physically-based computation founded on quantum-theoretic concepts) is gaining prominence because of recent claims for its massively increased computational eeciency, its potential for bridging brain and mind, and its increasing relevance as computer technology develops into nanotechnology. Its impact on neural information processing has so far been minimal. This paper introd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum Machine Intelligence
سال: 2020
ISSN: 2524-4906,2524-4914
DOI: 10.1007/s42484-020-00025-7